
Bing AgilityBing Agility
MODERN ENGINEERING PRINCIPLES FOR LARGE SCALE TEAMS AND
SERVICES



Outline
1. A bit about Bing

2. Velocity… What does it mean?

3. What is tested?3. What is tested?

4. Modern Engineering Principles

5. The inner and outer loop

6. Performance gating



A bit about Bing

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

Jan-09 Jan-10 Jan-11 Jan-12 Jan-13 Jan-14

1. BING IS GROWING
Search market

share

Queries/UU (Dec 2014)

Bing 38.3

Google 66.9
2. MORE
WORK TO DO

WW > 300M users, 9B searches/month
US >100M users, 4B searches/month

Bing Powered by Bing Google

3. DIFFERENTIATE



Velocity

Does not mean… Does mean…

Shipping untested code… (any bozo can
do that)

Shipping thoroughly tested code…

Shipping with high quality

Shipping fast!



What is tested?

Browser Device

Security Performance

Localization

Globalization

Privacy

Scenario
Coverage Instrumentation

Composition



Modern Engineering Principles
Current engineering landscape

Hundreds of engineers

• 2000 engineers, across all continents

Ship 4x/dayShip 4x/day

• Full build shipped to production, no live site issues!

Agile

• {design, dev, test} ship (no P0 bugs) repeat

One source tree

• Componentization, contracts, modularization

19.7% search market share (>30% share if Yahoo! is included)



Modern Engineering Principles
Test-Driven Evolution: 11 Principles

1. Automate every test, but don’t test everything

2. Run all tests for every single check-in

3. Tests are binary: either they all pass, or they all fail

4. No test selection. Run them all. Scale thru HW + SW + Quota4. No test selection. Run them all. Scale thru HW + SW + Quota

5. Retire/Change old definitions and concepts

6. Embrace the Open-Source!

7. Testing in Production (deploy to production, test in production)

8. Deployment gated by tests: if any test fails, rollback

9. Defensive coding techniques (code + test case for every check-in, small check-ins, code behind
flights, etc.)

10. Be truly data driven

11. Live Site remains the King!



1. Automate every test,
but don’t test everything

Make every test reliable:

• Use mock data to isolate the code

• Write Once, Run Against Multiple Contexts

• Have “contractual” tests running to validate FE BE schema• Have “contractual” tests running to validate FE BE schema

Trust modern tools:

• UI automation is no longer fragile (Selenium)

• Cloud helps with elasticity for your tests (scaling out)

Have a browser matrix, stick with it and deal with the rest!



2. Run all tests for every single check-in

Integration of tests with Code Flow

• Takes one hour for the first review to come (idle time)

• Changes build deploy tests• Changes build deploy tests

20,000 tests <= 20min, code coverage ~65%

• Fast: mocked data

• Fast: Machines + Parallelism

• Fast: time quota system per feature team



3. Tests are binary: either they all
pass, or they all fail

No concept of All tests mustNo concept of
priorities until the

test fails

All tests must
pass, otherwise

check-in’s blocked



4. No test selection. Run them all.
Scale thru HW + SW + Quota

The problems with test selection:

• A complicated imperfect system b/w product and tests

• Makes the process non-deterministic• Makes the process non-deterministic

• Some tests will rarely run!

“Throw machines at the problem!”

• This is what most big software corporations do

• Combination of HW + SW + Quota system



5. Retire/Change old definitions and
concepts – Simplify!

Dev Documents
and Test Plans

One Page

Test case priorities
 Until they fail,

they are P0
Test suites one

Test pass done
when the check-in

goes thru

Ship decision
Test environments
 production

But what about
destructive?

production

Code coverage
just one data point

Ship decision
from managers to
engineers, based

on bugs

Obsessed about
bugs Obsessed
about user impact

Line b/w dev and
test blurred



6. Embrace the Open-Source!

Don’t try to compete with them – join them

All our tools are now all based on open-source

• Selenium, WebPageTest, PhantomJS, JS libraries, and many others

The work involved:

• Streamline the approval process

• Plumbing & Stitching the tools to work on MS tech



7. Testing in Production (TiP)

The problems with
test environments:

• Maintenance

• Not representative

• Infinite catch-up game

Use an “invisible” • Behind a non-rotate flightUse an “invisible”
PROD environment

• Behind a non-rotate flight

• Behind a VIP that can’t be accessed from outside corpnet

Look at issue
patterns in PROD

What about
destructive tests?

• Do it in PROD! Failovers/Load/Switch off the power to a DC

• Better found by you than by someone else!

• Instrument every single aspect of the code

• Big data/machine learning/telemetry techniques



8. Deployment gated by tests: if any
test fails, rollback
xPing: our version of Gomez/Keynote:

• Simple HTTP Gets

• xPing+: complex web-based scenarios using Selenium

• Runs continuously, alerts based on availability threshold• Runs continuously, alerts based on availability threshold

• E2E (no mocking)

Canary deployment:

• Deploy to one DC

• “Observe” the xPing tests

• All passed after N minutes? Push to the other DCs

• No? Rollback!



9. Defensive coding techniques
Code + functional test case for every check-in

Small, frequent check-ins

Defensive code – no assumptions!Defensive code – no assumptions!

Code behind a flight – switchable on/off:



10. Be truly data driven
Instrument every aspect of your code

Build a pipeline to gather and analyze the data

Flight Fail 90% Learn Ship 10%Flight Fail 90% Learn Ship 10%

Make informed decisions based on data

• Example:



11. Live Site

Heavy monitoring in production:

•Organic Monitoring (counters and rules)

•Synthetic Simple Monitoring (xPing, 10K
tests)

•Synthetic Advanced Monitoring (exploratory)

Availability:

•Based on real traffic (Search Merged Logs)

•Real-Time

•Synthetic Advanced Monitoring (exploratory)

DRI – Designated Responsible
Individual

ITR – Incident Tracking Record



Challenges & Learnings
 Management must embrace it

 Put dedicated engineers on the problems

 Be date-driven (things won’t be perfect, but just do it!)

 This is a drastic change This is a drastic change
 Not everyone was happy… but don’t try to please everyone!

 Have challenging and insane goals



The Inner Dev Loop (on demand)



Bing UX Functional Automation

MOCK BE
XML

Mocked functional automation
◦ Create and deploy mocked data

◦ Request it as a Backend response

Test case

Test case

MOCK BE

UX

XML

XML



Bing UX Functional Automation
Vector Data

HTTP request/response Mock

HTTP request/response Live

Browser-driven Mock

Browser-driven Live
BING BE

Browser-driven Live

Selenium Grid
MOCK BE

UX

Test case

HTTP request

Browser

XML

BING BE



Bing UX Functional Automation
Vector Data

HTTP request/response Mock

HTTP request/response Live

Browser-driven Mock

Browser-driven Live
BING BE

Browser-driven Live

Selenium Grid
MOCK BE

UX

BING BE

Test case

HTTP request

Browser



Bing UX Functional Automation

LIVE BE

Vector Data

HTTP request/response Mock

HTTP request/response Live

Browser-driven Mock

Browser-driven Live

Selenium Grid
MOCK BE

UX

LIVE BE

Test case

HTTP request

Browser

Browser-driven Live

XML



Bing UX Functional Automation

LIVE BE

Vector Data

HTTP request/response Mock

HTTP request/response Live

Browser-driven Mock

Browser-driven Live

Selenium Grid
MOCK BE

UX

LIVE BE

Test case

HTTP request

Browser

Browser-driven Live



Code Reviews

Parallel with build creation

Parallel with test execution

Can block check-in…



Checked-in code

Has passed ALL tests

WILL ship within hours

OWNED by the feature teams



Continuous Delivery Loop (every day)



Performance Testing Strategy: Budgeting

Runs as a check-in test

Utilizes developer maintained budgets
for resources

Below, identified an increase in pageBelow, identified an increase in page
size due to a CSS change



Performance Testing Strategy: Time (Load Test)

Forks traffic from production (no PII, ~1M queries)

Results from initial requests cached & replayed

Runs for every check-in (2ms resolution)

Options: justify the increase, or offset it by optimizing other areas

4ms
Optimization

Options: justify the increase, or offset it by optimizing other areas
Optimization
Checked In
Here



Questions?


